2 INCH OVERFILL PREVENTION VALVE

#1228-03-1500

CLAY & BAILEY MANFACTURING COMPANY

P.O. Box 8026 6401 East 40th Street Kansas City, Mo. 64129

Phone:1-800-821-6583, 1-816-924-3900

Fax: 1-816-924-3903

E-Mail: CandBmfg@swbell.net www.claybailey.com

FEATURES

- 1. Ease of installation, no special tools required.
- 2. It can be set up for direct fill with a liquid tight connection or piped to a remote hook up.
- 3. No minimum pressure requirement.
- 4. Positive shut off of flow into the tank ensures overfill prevention.
- 5. The overfill prevention valve is compatible with water, diesel fuel, gasoline, #2 heating and motor oil. (*)

SPECIFICATIONS

- 1. Component materials are hard anodized aluminum, stainless steel, and polyurethane.
- 2. It threads into a 2 inch tank opening.
- 3. The inlet has 2 inch male pipe threads.
- 4. Flow rate for various fluids are shown on the following pages, (graphs 1, 2, and 3).
- 5. It is designed for use with single wall tanks 300 degree or intimate wrap tanks.

^{*} For other applications, please consult the factory.

Graph 1 (water and diesel fuel)

Graph 2 (#2 heating oil)

Graph 3 (30W motor oil)

More Products Turn The Page ▶

Installation Instructions for the 1228-03-1500 Overfill Prevention Valve:

CAUTION!

1. Remove packing while holding the float stable.

CAUTION!

CARE SHOULD BE TAKEN WHEN PERFORMING STEP 1 TO PREVENT DAMAGE TO THE FLOAT!

DO NOT LIFT OR CARRY UNIT BY THE FLOAT!

- 2. Record serial number stamped on the flat for future reference. **Note the float arrrow direction** on body to avoid internal obstructions.
- 3. Guide the float through the 2" threaded opening in the tank then the valve body, **be careful not** to damage the threads (SEE FIGURE 1, 2, and 3) or cross thread.
- 4. Turn the valve body clockwise to thread into the 2" opening.
- 5. Tighten the valve with a wrench, be careful not to place the wrench jaws on the flat with serial numbers, on the square flats. Do not over tighten!

This unit is to be used with a closed fill, liquid tight connection only. Do not fill with a regular nozzle, splash back will occur.

More Products Turn The Page ▶

Figure 1.

Figure 2.

Installation of #1228-03-1500 Overfill Prevention Valve

Figure 3.

Figure 4.

More Products Turn The Page ▶

Operating Procedures:

THIS VALVE IS DESIGNED FOR LIQUID TIGHT FILL OPERATION AND MUST BE USED WITH PROPER CONNECTIONS. FAILURE TO PROPERLY CONNECT AND/OR DISCONNECT THE DELIVERY HOSE WILL RESULT IN AN EXTREMELY DANGEROUS SITUATION!

READ THESE INSTRUCTIONS CAREFULLY AND COMPLETELY BEFORE OPERATING THIS DEVICE.

Before Filling:

- 1. Insure that the bypass valve on the transport pump is working properly.
- 2. Do not exceed 45 psig delivery pressure.
- 3. Inspect delivery hose and fittings for wear and damage.
- 4. A dry break coupling or cam-lock type coupling is required for delivery.
- 5. After hooking up the delivery hose, visually inspect the connection.
- 6. Verify downstream piping is connected and tight.
- 7. If any leakage is discovered during or after delivery, discontinue use and repair or replace damaged parts.

Filling and Disconnection Process:

- 1. Connect the delivery coupler to the valve fill adaptor.
- 2. Make sure the nozzle or isolation valve is completely closed.
- 3. Turn on the pump.
- 4. Slowly open the nozzle or isolation valve.
- 5. Monitor the tank liquid level at all times during fill.
- 6. Observe delivery hose and connections, and listen to the pump for signs that the valve has closed.
- 7. When shut off is detected, close the nozzle or isolation valve and shut off the delivery pump.
- 8. Reopen the nozzle/isolation valve and allow 5 minutes for the pressure in the line to drop.

ATTEMPTING TO DISCONNECT THE COUPLER WITH PRESSURE IN THE LINE COULD RESULT IN THE RELEASE OF PRODUCT!

9. Close the nozzle/isolating valve and slowly disengage the delivery coupling, replace cap.

Α	В	С	D	Ε	F	G
7.80	4.69	5.31	1.93	2.63	2.63	3.00

FIGURE 5

DETERMINE TANK SHUT OFF HEIGHT

- 1. The shut off height can be determined from the style and size of tank.
- 2. From the figures on the following pages select the style of tank.
- 3. From the table on the same page, the size of the tank on the table read across to determine the percentage full.
- 4. Take the percentage full multiplied by the height of the tank for the shut off height.
- 5. The overfill prevention valve should be 6 inches from the end of the tank.

OBROUND TANKS						
TANK	TANK	PERCENT				
DIMENSIONS LEVEL		SHUT OFF				
27 X 44	39	93				
27.5 X 44	39	93				

DETERMINE TANK SHUT OFF HEIGHT

- 1. The shut off height can be determined from the style and size of tank.
- 2. From the figures on the following pages select the style of tank.
- 3. From the table on the same page, the size of the tank on the table read across to determine the percentage full.
- 4. Take the percentage full multiplied by the height of the tank for the shut off height.
- $5. The overfill \, prevention \, valve \, should \, be \, 6 \, in ches \, from \, the \, end \, of \, the \, tank.$

ROUND TANKS					
TANK	TANK	PERCENT			
DIAMETER	LEVEL	SHUT OFF			
22	17	83			
24	19	85			
26	21	87			
28	23	88			
30	24	90			
32	27	90			
34	29	91			
36	31	91			
38	33	93			
40	35	94			
42	37	94			
45.5	40.5	94			
48	43	95			
54	49	95			
64	59	96			

DETERMINE TANK SHUT OFF HEIGHT

- 1. The shut off height can be determined from the style and size of tank.
- 2. From the figures on the following pages select the style of tank.
- 3. From the table on the same page, the size of the tank on the table read across to determine the percentage full.
- 4. Take the percentage full multiplied by the height of the tank for the shut off height.
- 5. The overfill prevention valve should be 6 inches from the end of the tank.

RECTANGULAR TANKS						
TANK	TANK	PERCENT				
HEIGHT	_ LEVEL	SHUT OFF				
24	19	80				
26	21	81				
28	23	82				
30	25	83				
32	27	84				
34	29	85				
36	31	86				
38	33	87				
40	35	88				
42	37	88				
48	43	90				

